AN ECONOMETRIC MODEL OF THE PRINCE EDWARD ISLAND TAX SECTOR

P. Nagarajan*
University of Prince Edward Island

Introduction
The purpose of this investigation is to develop an econometric model of the Prince Edward Island (P.E.I.) tax sector that may be used to forecast the general tax revenues of the province. The model is designed to estimate the impact on certain P.E.I. economic variables as the result of the changes in selected exogenous variables. The specification of a 14-equation tax model and its schematic diagram are presented in the following section. The third section contains the estimation of the structural equations of the model, and in the fourth the reduced form equations of the tax model are presented. The fifth section contains simulation of the model and model validation test statistics. Finally, the impact analysis and projections of tax revenues are presented.

Specification of the Model
A simultaneous equation model is specified to describe the tax sector of the P.E.I. economy. A schematic diagram showing the behavioral relationships among the variables is presented in Figure 1. The model presented here involves 14 equations (13 behavioral and 1 identity type); 5 are used as supporting equations for the remaining 9, which are used to estimate the total tax revenue and its components. The general structure of the model is as follows:

(1) \(RS = f(PY, T_1) \)
(2) \(N = f(POP, RS, \Delta GNP) \)
(3) \(VR = f(PY, VR_{t-1}) \)

*This research was supported by funds from the Canada Council and the Senate Research Committee of the University of Prince Edward Island. The author is indebted to the editors and anonymous referees for valuable comments and suggestions.
The endogenous variables of the model are:

- **ABT**: alcoholic beverages tax revenue
- **ABUT**: all business tax revenue
- **AOT**: all other tax revenue
- **ERPYT**: effective rate of personal income tax
- **GAST**: gasoline tax revenue
- **GRT**: general tax revenue
- **N**: employment
- **PRT**: property tax revenue
- **PY**: personal income
- **PYT**: personal income tax revenue (provincial)
- **RS**: retail sales
- **ST**: sales tax revenue
- **TOBT**: tobacco tax revenue
- **VR**: vehicles registered

The exogenous and lagged variables of the model are:

- **AVW**: average weekly wages
- **ΔGNP**: change in gross national product (GNP-GNP_{t-1})
- **POP**: population
- **PRT_{t-1}**: property tax revenue in the previous year
- **PY_{t-1}**: personal income in the previous year
- **PYT_{t-1}**: personal income tax revenue in the previous year
- **PYTR**: personal income tax rate (provincial)
- **STR**: sales tax rate
- **ΔVR**: change in vehicles registered (VR-VR_{t-1})
- **VR_{t-1}**: vehicles registered in the previous year
- **T**: time (linear trend element)
- **Dum1**: a dummy variable to observe the effect of changes in the property tax rate
- **Dum2**: a dummy variable to observe the effect of changes in the tobacco tax rate
- **Dum3**: a dummy variable to observe the effect of changes in the gasoline tax rate
- **Dum4**: a dummy variable to observe the effect of changes in the tax-base (introduction of new tax)

(The values used for four dummy variables in course of estimating the model for the 1959-1973 period are: Dum1=1 for the years when there was a change in the tax rate; and Dum=0 for the years when there was no change in the tax rate.)

As can be seen from the specification of the model, employment is taken to depend on population, retail sales, and the change in gross national product. These explanatory variables were chosen to account for the potential number of employable persons in the province and the actual demand placed on this potential. The variable retail sales (a proxy for "economic activity") represents this demand from P.E.I., while ΔGNP represents the demand from outside the economy. The personal income is explained by relating it to employment, previous year's personal income, and average weekly wages. Personal income, directly or indirectly, is linked to several equations.
of the model. For example, retail sales is expressed as a function of personal income and a trend variable. The number of vehicles registered is taken to depend on personal income and the previous year's stock of registered vehicles. Personal income is also used as one of the explanatory variables to explain the variations in tobacco tax revenue, alcoholic beverages tax revenue, and all other tax revenues, consisting of amusement tax, insurance premium tax, and so forth.

Estimation of the Model

The model is estimated by two-stage least squares method with annual data from the period 1959 - 1973. The tax revenues, personal income, and retail sales are expressed in millions of dollars; employment, population, and vehicles registered in thousands; and GNP in billions. The fitted equations with their t-ratios (numbers beneath the regression coefficients), the adjusted coefficient of multiple determination, R^2, the Durbin-Watson statistic (D.W.), F. statistics, and standard error of the estimate (SEE) are given below:

1) \[RS = 45 + 0.337PY + 1.26OT \]
 \[(6.5) \quad (1.5) \]
 \[R^2 = 0.9854 \quad F = 405.0242 \quad SEE = 3.9221 \quad D.W. = 1.5428 \]

2) \[N = 11.36 + 0.169POP + 0.017RS + 0.353AGNP \]
 \[(1.50) \quad (0.88) \quad (2.38) \]
 \[R^2 = 0.9407 \quad F = 58.1696 \quad SEE = 0.6621 \quad D.W. = 2.6690 \]

3) \[VR = 4.08 + 0.0153PY + 0.836VR_{t-1} \]
 \[(2.57) \quad (12.03) \]
 \[R^2 = 0.9935 \quad F = 928.9801 \quad SEE = 0.5895 \quad D.W. = 2.0947 \]

4) \[PY = -179.70 + 3.89N + 2.38AVW + 0.33PY_{t-1} \]
 \[(1.37) \quad (2.59) \quad (1.26) \]
 \[R^2 = 0.9929 \quad F = 515.6270 \quad SEE = 0.6621 \quad D.W. = 2.4181 \]

5) \[PRT = 0.28 + 1.02PRT_{t-1} - 4.09DUM1 \]
 \[(9.95) \quad (5.87) \]
 \[R^2 = 0.8933 \quad F = 50.2465 \quad SEE = 0.5895 \quad D.W. = 2.0947 \]

6) \[ERPYT = -1.12 + 0.00409PY + 0.062PYTR \]
 \[(2.01) \quad (2.54) \]
 \[R^2 = 0.9679 \quad F = 136.0408 \quad SEE = 0.1269 \quad D.W. = 0.7053 \]

7) \[PYT = -0.646 + 1.086ERPYT + 0.920PYT_{t-1} \]
 \[(1.46) \quad (3.60) \]
 \[R^2 = 0.9820 \quad F = 231.7229 \quad SEE = 0.3406 \quad D.W. = 1.3408 \]

8) \[ST = -12.04 + 0.505VR + 0.0987RS + 0.958STR \]
 \[(1.68) \quad (6.42) \quad (2.58) \]
 \[R^2 = 0.9791 \quad F = 156.5269 \quad SEE = -0.6818 \quad D.W. = 2.2111 \]

9) \[ABUT = -3.43 + 0.138N \]
 \[(2.92) \]
 \[R^2 = 0.4861 \quad F = 8.5132 \quad SEE = 0.2926 \quad D.W. = 1.8024 \]
10) \[\text{TOBT} = -0.2019 + 0.00467\text{PY} + 0.2046\text{DUM2} \]
\[
(19.00) \quad (2.97)
\]
\[\bar{R}^2 = 0.9689 \quad F = 187.0054 \quad \text{SEE} = 0.0664 \quad \text{D.W.} = 1.0215 \]

11) \[\text{GAST} = -3.745 + 0.245\text{VR} + 0.110\text{DUM3} \]
\[
(12.27) \quad (0.30)
\]
\[\bar{R}^2 = 0.9337 \quad F = 84.5058 \quad \text{SEE} = 0.4415 \quad \text{D.W.} = 0.4268 \]

12) \[\text{ABT} = 0.1386 + 0.0022\text{PY} + 0.0231\text{T} \]
\[
(5.81) \quad (3.77)
\]
\[\bar{R}^2 = 0.9895 \quad F = 569.6655 \quad \text{SEE} = 0.0287 \quad \text{D.W.} = 1.6344 \]

13) \[\text{AOT} = -0.0445 + 0.00103\text{PY} + 0.8954\text{DUM4} \]
\[
(1.72) \quad (10.65)
\]
\[\bar{R}^2 = 0.9151 \quad F = 64.6968 \quad \text{SEE} = 0.1589 \quad \text{D.W.} = 1.2250 \]

14) \[\text{GTR} = \text{PRT} + \text{ST} + \text{ABUT} + \text{TOBT} + \text{GAST} + \text{ABT} + \text{AOT} + \text{PYT} \]

By substituting appropriate values into equation 14, we get:

\[\text{GTR} = -19.60 + 0.00791\text{PY} + 0.0987\text{RS} + 0.138\text{N} \\
+ 0.245\text{VR} + 1.086\text{ERPYT} + 1.022\text{PRT}_{t-1} \\
+ 0.920\text{PYT}_{t-1} + 0.505\text{AVR} + 0.958\text{STR} \\
-4.093\text{DUM1} + 0.2046\text{DUM2} + 0.110\text{DUM3} \\
+ 0.8954\text{DUM4} + 1.283\text{T} \]

Reduced Form Equations

The reduced form equations of the tax model are derived from the set of structural equations of the model. A matrix formulation of the structural form is as follows:

\[Y' = X'\beta + \mu' \]

Where \(A \), the endogenous matrix, is an \(m \) by \(m \) matrix of coefficients of the dependent variables, and \(\beta \), the exogenous matrix, is an \(n \) by \(m \) matrix of coefficients of the independent variables. The

Reduced Form Equations

The reduced form equations of the tax model are derived from the set of structural equations of the model. A matrix formulation of the structural form is as follows:

\[Y' = X'\beta + \mu' \]

The inverse of the endogenous matrix \(A \) is then found by conventional inversion method and the inverted matrix multiplied by the exogenous matrix \(\beta \). The newly formed \(n \) by \(m \) matrix is again multiplied by the constant -1 to form matrix \(C \). Matrix \(C \) contains the coefficients of the reduced form equation with the basic form:

\[Y' = X'C + \mu' \]

The reduced form coefficients reflect both direct and indirect effects of the exogenous variables on the endogenous variables. For example, \(\DeltaGNP \) does not appear in the structural equation determining retail sales (equation 1). However, \(\DeltaGNP \) does affect total employment in the province (equation 2), which, in turn, affects personal income (equation 4). Personal income, in turn, affects retail sales. Therefore, \(\DeltaGNP \) has an indirect effect on retail sales.

The estimates of the reduced form parameters are also called impact multipliers since they measure the direct and indirect impacts of changes in the exogenous variables. The reduced form equations of the tax model are presented below. In this form, the effect of a change in any one, or all, of the exogenous variables can be easily measured on any one, or all, of the endogenous variables in the model.

(R-1) \[\text{RS} = -1.7084 + 0.2264\text{POP} + 0.4729\text{AGNP} + 0.8211\text{AVW} + 0.1138\text{PY}_{t-1} + 1.2630\text{T} \]

(R-2) \[\text{N} = 11.0927 + 0.1690\text{POP} + 0.3530\text{AGNP} + 0.01396\text{AVW} + 0.00193\text{PY}_{t-1} + 0.02196\text{T} \]

(R-3) \[\text{VR} = 2.0033 + 0.0103\text{POP} + 0.0215\text{AGNP} + 0.8360\text{VR}_{t-1} + 0.0373\text{AVW} + 0.00516\text{PY}_{t-1} + 0.0013\text{T} \]

(R-4) \[\text{PY} = -131.4830 + 0.6719\text{POP} + 1.4034\text{AGNP} + 2.3820\text{AVW} + 0.3300\text{PY}_{t-1} + 0.08537\text{T} \]

(R-5) \[\text{PRT} = 0.2800 + 1.0220\text{PRT}_{t-1} -4.09\text{DUM1} \]

(R-6) \[\text{ERPYT} = -1.6760 + 0.00275\text{POP} + 0.00575\text{AGNP} + 0.0014\text{PY}_{t-1} + 0.0004\text{T} + 0.0626\text{PYTR} + 0.0010\text{AVW} \]

(R-7) \[\text{PYT} = -2.4754 + 0.00299\text{POP} + 0.00624\text{AGNP} + 0.01095\text{AVW} + 0.00151\text{PY}_{t-1} + 0.920\text{PYT}_{t-1} + 0.0004\text{T} + 0.068\text{PYTR} \]
As can be seen from the above reduced form equations, population, ΔGNP, average weekly wages, and lagged personal income affect all taxes. As expected, all the exogenous variables of the model exert some influence on the general tax revenue of the province (reduced form equation 14).

Model Validation

Given that the tax model has been estimated by conventional methods and transformed into its reduced form, an important question arises concerning how one can validate the model. Despite the simplicity of the tax model, its simulation of performance is surprisingly good. To see this, we can examine an *ex post* (historical) simulation over the estimation period 1959 - 1973. The results are shown graphically (Figure 2), where the actual and simulated values of the endogenous variables, including the general tax revenues (Figure 3), are plotted on the same set of axes. It can be seen that over the period 1959 - 1973 the general tax revenue is apparently simulated with a fairly high degree of accuracy.
Figure 2 PERFORMANCE OF EQUATIONS
CHART 9: ALL BUSINESS TAX REVENUE

CHART 10: GASOLINE TAX REVENUE

CHART 11: TOBACCO TAX REVENUE

CHART 12: ALCOHOLIC BEVERAGES TAX

Figure 2 (cont'd)
CHART 13: ALL OTHER TAX REVENUE

Figure 2 (cont'd)

Figure 3 SIMULATION OF GENERAL TAX REVENUES
The RMS (root-mean-square) per cent error was computed to measure the deviation of the simulated variables from their actual time path. A low RMS simulation error is only one desirable measure of the simulation fit. Another test of the model's performance is to examine its capacity to signal turning points. For the purpose of evaluating how well the tax model simulates turning points in the historical data, the Theil's inequality coefficient (U-statistic) was computed for all the endogenous variables of the model. The U-statistic and RMS per cent error are shown in Table 1. It should be observed that in general the root-mean-square per cent errors are rather small, and only one variable (all business tax revenue) shows root-mean-square error larger than 5 per cent. The RMS error is just less than 2 per cent for the general tax revenue. This provides a considerable insight into the accuracy of the tax model.

Inspection of Table 1 also shows that thirteen out of fourteen Theil's inequality coefficients are rather low. The coefficient for general tax revenue is just 0.18. This general smallness of the inequality coefficient tends to confirm that the tax model signals turning points fairly well.

By inserting appropriate values into equation 14 we obtained a predicted general tax revenue of $43.15 million for the year 1974 (outside the sample period), and the actual figure turned out to be $44.60 million. This means that the percentage error was only -2.80.

Impact Analysis and Projection

One of the important analytic results of any econometric model is its impact results. A summary of the impact of changes in some autonomous forces on selected P.E.I. economic variables is presented in Table 2. The change in gross national product is one of the exogenous variables in the model. It is estimated that a change in GNP of $1.0 billion would lead to an increase in employment by 353 jobs in the province, $1.4 million in personal income, and $119,000 in general tax revenues of the province. This reflects the degree of interaction between the national and provincial economy. Given the structure of the economy, it is estimated from the model that an increase in population of 1,000 would affect personal income by $672,000, retail sales of $226,000, general tax revenues of $57,000, and total employment of 170. A decline in employment would have negative impact on all the endogenous variables. The impact of other exogenous stimuli on P.E.I. economic variables can be seen from Table 2.

Table 3 shows the projected general tax revenues, 1975 - 1983, on the basis of certain assumed growth rates in three exogenous variables—GNP, average weekly wages in P.E.I., and population. An interesting observation that can be made from the projected
Table 1
MODEL VALIDATION TEST STATISTICS—ROOT-MEAN-SQUARE SIMULATION ERRORS¹ AND THEIL’S COEFFICIENTS²

<table>
<thead>
<tr>
<th>Endogenous variable</th>
<th>RMS per cent error</th>
<th>U-coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>2.62</td>
<td>0.26</td>
</tr>
<tr>
<td>N</td>
<td>0.42</td>
<td>0.40</td>
</tr>
<tr>
<td>VR</td>
<td>0.35</td>
<td>0.23</td>
</tr>
<tr>
<td>PY</td>
<td>0.95</td>
<td>0.22</td>
</tr>
<tr>
<td>PRT</td>
<td>2.78</td>
<td>0.36</td>
</tr>
<tr>
<td>ERPYT</td>
<td>4.90</td>
<td>0.22</td>
</tr>
<tr>
<td>PYT</td>
<td>3.73</td>
<td>0.19</td>
</tr>
<tr>
<td>ST</td>
<td>3.28</td>
<td>0.33</td>
</tr>
<tr>
<td>ABUT</td>
<td>7.70</td>
<td>0.74</td>
</tr>
<tr>
<td>TOBT</td>
<td>3.18</td>
<td>0.26</td>
</tr>
<tr>
<td>GAST</td>
<td>3.04</td>
<td>0.33</td>
</tr>
<tr>
<td>ABT</td>
<td>1.01</td>
<td>0.25</td>
</tr>
<tr>
<td>AOT</td>
<td>5.00</td>
<td>0.23</td>
</tr>
<tr>
<td>GTR</td>
<td>1.87</td>
<td>0.18</td>
</tr>
</tbody>
</table>

¹RMS Simulation Error = \(\frac{1}{n} \sqrt{\frac{\sum_{i=1}^{n} \left(\frac{Y_t - \hat{Y}_t}{Y_t} \right)^2}{n}} \)
This is a measure of the deviation of the simulated variable from its actual time path expressed in percentage terms.

²Theil’s inequality coefficient is defined as:
\[
\begin{align*}
\text{u} &= \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{(S_t - S_{t-1})}{(A_t - A_{t-1})} \right)^2} - \frac{1}{n} \sum_{i=1}^{n} \frac{(S_t - S_{t-1})}{(A_t - A_{t-1})} \frac{(A_t - A_{t-1})}{(A_t - A_{t-1})}
\end{align*}
\]

Where
- \((S_t - S_{t-1})\) = change in simulated value
- \((A_t - A_{t-1})\) = change in actual value
- \(n\) = number of observations.

Like the correlation coefficient, \(u\)-coefficient is confined to the zero one interval. When \(u\) is zero there is the case of perfect prediction. Also \(u\) will be one in the case of worst possible forecasts. The smaller the value of \(u\), the more accurate the forecast.
Table 2

IMPACT OF CHANGES IN AUTOMONOUS FORCES ON THE PROVINCIAL ECONOMY

<table>
<thead>
<tr>
<th>Autonomous Changes</th>
<th>∆Retail Sales ($)</th>
<th>∆Employment (No. of Jobs)</th>
<th>∆Personal Income Tax Revenue ($)</th>
<th>∆Sales Tax Revenue ($)</th>
<th>∆All Business Tax Revenue ($)</th>
<th>∆Gasoline Tax Revenue ($)</th>
<th>∆Alcoholic Beverages Tax Revenue ($)</th>
<th>∆Tobacco Tax Revenue ($)</th>
<th>∆All Other Tax Revenue ($)</th>
<th>∆Total General Tax Revenue ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆GNP by $1.0 Billion</td>
<td>472,000</td>
<td>353</td>
<td>1,403,400</td>
<td>6,240</td>
<td>46,700</td>
<td>49,800</td>
<td>5,250</td>
<td>3,000</td>
<td>6,600</td>
<td>1,400</td>
</tr>
<tr>
<td>∆Population by 1,000</td>
<td>226,000</td>
<td>170</td>
<td>672,000</td>
<td>3,000</td>
<td>23,340</td>
<td>23,850</td>
<td>2,510</td>
<td>1,500</td>
<td>3,200</td>
<td>700</td>
</tr>
<tr>
<td>∆Average Weekly Wages by one dollar</td>
<td>820,000</td>
<td>14</td>
<td>2,382,000</td>
<td>10,950</td>
<td>81,000</td>
<td>1,900</td>
<td>9,100</td>
<td>5,400</td>
<td>11,500</td>
<td>2,400</td>
</tr>
<tr>
<td>∆Personal income by $1.0 million (Exogenous Stimuli)</td>
<td>337,000</td>
<td>6</td>
<td>4,450</td>
<td>33,000</td>
<td>800</td>
<td>3,748</td>
<td>2,200</td>
<td>4,660</td>
<td>1,010</td>
<td>49,908</td>
</tr>
<tr>
<td>∆Employment by 100 (Exogenous Stimuli)</td>
<td>131,000</td>
<td>—</td>
<td>388,700</td>
<td>1,710</td>
<td>12,900</td>
<td>13,800</td>
<td>1,500</td>
<td>900</td>
<td>1,800</td>
<td>400</td>
</tr>
<tr>
<td>∆Retail Sales by $1.0 million (Exogenous Stimuli)</td>
<td>—</td>
<td>17</td>
<td>66,000</td>
<td>294</td>
<td>98,000</td>
<td>2,300</td>
<td>245</td>
<td>145</td>
<td>3,080</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 3
(millions of dollars)
(Figures in brackets are annual growth rate of projected GTR)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Growth Rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNP 13%</td>
<td>49.6828</td>
<td>55.5715</td>
<td>61.9600</td>
<td>68.8911</td>
<td>76.4200</td>
<td>84.6104</td>
<td>93.5354</td>
<td>103.2677</td>
<td>113.8998</td>
</tr>
<tr>
<td>Average Weekly Wage 11%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population 1.5%</td>
<td>(11.67)</td>
<td>(11.85)</td>
<td>(11.50)</td>
<td>(11.19)</td>
<td>(10.93)</td>
<td>(10.72)</td>
<td>(10.55)</td>
<td>(10.40)</td>
<td>(10.30)</td>
</tr>
<tr>
<td>D1, D2, D3, D4 = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Growth Rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNP 14%</td>
<td>49.6850</td>
<td>55.3806</td>
<td>61.4798</td>
<td>68.0357</td>
<td>75.1009</td>
<td>82.7313</td>
<td>90.9878</td>
<td>99.9369</td>
<td>109.6516</td>
</tr>
<tr>
<td>Average Weekly Wage 9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population 1.5%</td>
<td>(11.68)</td>
<td>(11.46)</td>
<td>(11.01)</td>
<td>(10.66)</td>
<td>(10.38)</td>
<td>(10.16)</td>
<td>(9.98)</td>
<td>(9.84)</td>
<td>(9.72)</td>
</tr>
<tr>
<td>D1, D2, D3, D4 = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Growth Rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNP 15%</td>
<td>49.8640</td>
<td>55.8516</td>
<td>62.3397</td>
<td>69.3835</td>
<td>77.0446</td>
<td>85.3919</td>
<td>94.5012</td>
<td>104.4567</td>
<td>115.3513</td>
</tr>
<tr>
<td>Average Weekly Wage 10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population 1.5%</td>
<td>(12.08)</td>
<td>(12.01)</td>
<td>(11.62)</td>
<td>(11.30)</td>
<td>(11.04)</td>
<td>(10.83)</td>
<td>(10.67)</td>
<td>(10.53)</td>
<td>(10.43)</td>
</tr>
<tr>
<td>D1, D2, D3, D4 = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Growth Rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNP 15%</td>
<td>50.0453</td>
<td>56.1353</td>
<td>62.7292</td>
<td>69.8947</td>
<td>77.7007</td>
<td>86.2220</td>
<td>95.5407</td>
<td>105.7476</td>
<td>116.9436</td>
</tr>
<tr>
<td>Average Weekly Wage 10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population 1.5%</td>
<td>(12.49)</td>
<td>(12.17)</td>
<td>(11.75)</td>
<td>(11.42)</td>
<td>(11.17)</td>
<td>(10.97)</td>
<td>(10.81)</td>
<td>(10.68)</td>
<td>(10.59)</td>
</tr>
</tbody>
</table>
values is that the general tax revenues of the province would be increasing at a decreasing rate, regardless of the assumption about the annual growth rates in three exogenous variables.

In summary, given the relatively unsophisticated specification of the individual equations, the degree of fit is remarkably good in most cases. The overall performance of the simple, tentative model presented in this paper is also very good, judged from the simulation results. The model has tracked the historical data with a high degree of accuracy, and captured the so-called turning points quite satisfactorily.

Sources of Data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABT</td>
<td>Alcoholic Beverages Tax Revenue. Millions of Dollars.</td>
</tr>
<tr>
<td>ABUT</td>
<td>All Business Tax Revenue. Millions of Dollars.</td>
</tr>
<tr>
<td>AOT</td>
<td>All Other Tax Revenue. Millions of Dollars.</td>
</tr>
<tr>
<td>ST</td>
<td>Sales Tax Revenue. Millions of Dollars.</td>
</tr>
<tr>
<td>TOBT</td>
<td>Tobacco Tax Revenue. Millions of Dollars.</td>
</tr>
<tr>
<td>GAST</td>
<td>Gasoline Tax Revenue. Millions of Dollars.</td>
</tr>
<tr>
<td>PRT</td>
<td>Property Tax Revenue. Millions of Dollars.</td>
</tr>
</tbody>
</table>

Source:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STR</td>
<td>Sales Tax Rate</td>
</tr>
<tr>
<td>PYRT</td>
<td>Personal Income Tax Rate (Provincial)</td>
</tr>
</tbody>
</table>

Source:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR</td>
<td>Vehicles Registered. Thousands.</td>
</tr>
</tbody>
</table>

Source:
(5) Public Accounts. Department of Finance, P.E.I.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVW</td>
<td>Average Weekly Wages. Dollars.</td>
</tr>
</tbody>
</table>
Works Consulted

