INDUSTRIALIZATION IN THE DEVELOPMENT WORLD: PROCESS CYCLES AND THE NEW GLOBAL DIVISION OF LABOUR

Luis Suarez-Villa
Program in Social Ecology
University of California
Irvine, California 92717

Introduction

The rapid diffusion of technology and manufacturing processes to less developed nations has been one of the most significant developments in the interaction between advanced and less developed countries in recent years. Industries that were almost exclusively concentrated in the most advanced nations less than three decades ago are now commonplace in many developing countries. Thus, while technology transfer has been limited in many cases, and research and development activities have been mostly nonexistent, the internationalization of manufacturing has nevertheless been significant for an increasing number of less developed nations. This has been most obvious in the volume of exports produced by these nations, the domestic substitution of imports, and the generation of employment and skills for their labour force. The increasing internationalization of manufacturing activities has also had a significant impact in certain manufacturing industries in the most advanced nations. Plant closings, industry flight, and high unemployment have become a major concern of our time in such industries as electronics, textiles, apparel, and others involving many assembly-type operations. The significance of these changes for the advanced nations has been brought to our attention by Fröbel et al. [16] and Grunwald and Flamm [20] on West German and U.S. manufacturing industries and their diffusion to less developed nations.
One of the major difficulties confronting location theorists has been that of finding suitable theoretical constructs that can adequately explain these evolutionary shifts in the location of industries. The overwhelming emphasis placed by modern location theory on static paradigms has been a major obstacle in this respect, and has resulted in considerable neglect of the broader, evolutionary perspective. It is therefore not surprising that location theorists have come to view the product cycle, a concept long developed and applied in the fields of marketing and international trade, with increasing interest in recent years. While the first explicit application of the product cycle to industrial location was Vernon's [53], on the diffusion of multinational enterprises abroad, Thomas's [49;50] work was among the first to relate this concept to growth pole dynamics and technological change. This was later expanded by Hanson [21;22], Norton and Rees [37], Erickson and Leinbach [14], Sjafrizal [43], and Suarez-Villa [47], to explain shifts in the location of U.S. manufacturing to the Sunbelt and to nonmetropolitan areas. Case studies on specific firms and industries have also been provided by Krumme and Hayter [29] on aircraft manufacturing, and by Hekman [25;26] on the steel and the textile industries. Despite this rapid rise of interest, the product cycle nevertheless has important shortcomings that limit its application to the spatial domain. These shortcomings have been pointed out in the management and international trade literature by Penrose [38], Gold [19], Slome [44], Giddy [18], Vernon [54], and Day et al. [13], among others, and by Suarez-Villa [46;47;48] in the spatial literature, and will be a subject of discussion in the following section.

This paper will outline and discuss the manufacturing process cycle as a conceptual framework for the analysis of manufacturing diffusion to less developed nations. This approach reaches well beyond the narrow assumptions and scope of the product cycle, and can be related to the broader evolutionary perspectives of Schumpeter's [40] original contribution on the dynamics of economic processes, and to the more recent, post-Schumpeterian contributions of Georgescu-Roegen [17], Boulding [6;7], and Nelson and Winter [36]. Emphasis will be placed on the role of three major elements, labour, organizational environments, and technological change, and their relation to product and factor market conditions and evolution over a productive process's life cycle. In contrast to the product cycle approach, the manufacturing process cycle focuses on processes rather than products as the major vehicles of industrial change. This perspective is based on the Schumpeterian distinction between product and process innovation, and considers irreversible change to be one of the most important characteristics of productive processes [17:211]. The last section of the paper will discuss the three major elements of the process cycle in greater detail, relating them to industrialization policy strategies, and to the international diffusion of manufacturing activities.

Evolution of Industrialization: A Conceptual Framework

In its earliest form, the origins of the life cycle approach can be traced to Darwinian ideas on evolution and their diffusion to the study of economic processes. As early as 1914, economists such as Chapman and Ashton [11] were referring to a life cycle process in the development of manufacturing firms. These authors likened the growth and size of firms to the development of organisms, and applied this analogy to empirical studies on the development of English textile industries. Although such evolutionary ideas had attracted significant attention in the early part of this century, much of the early interest in economic change is usually traced to the development of the business cycle concept [52]. Secular economic change thus captured the attention of Kuznets [31] and Burns [9] in the nineteen-thirties. These works stressed the importance of short-term economic upswings and downturns rather than the irreversible character of developmental processes. Later, this approach was expanded and fused with a broader evolutionary perspective to study changes in product demand. Thus, the life cycle analogy became popular in the marketing literature, and was eventually expanded to include organizations and their internal functions [28;10:55;56]. This general approach was also adopted by less orthodox economists such as Boulding [6], in calling for a life cycle theory of the firm. Then, in the nineteen-sixties, the product cycle gained much attention in the area of international trade, particularly through the work of Vernon [52], Hirsch [27], and Wells [58]. These applications, although limited in many cases by the lack of adequate longitudinal data, nevertheless opened alternative vistas to the Heckscher-Ohlin paradigm and the comparative advantages approach.

Although the product cycle has remained viable for over four decades, the study of manufacturing life cycles and their spatial implications requires a broader perspective than that adopted by most product cycle applications. A better approach to the study of regional and international manufacturing change can be provided by evolutionary concepts grounded in Schumpeter's conceptualization of the dynamics of developmental processes and their impact on socioeconomic structures and institutions. In modern
times, this perspective has been expanded and developed by Georgescu-Roegen's [17] views on the entropic properties of economic process, and by Boulding's [8] macroanalytic attention to various aspects of social evolution. The evolutionary approach has also received significant attention in Forrester's [15] application of systems modeling to the development process, and in Nelson and Winter's [36] application of natural selection to sectoral evolution and productive organization. To a considerable extent, the adoption and application of this broad approach can help overcome the most serious shortcomings of the product cycle. Thus, for example, the product cycle's exclusive concern with output and demand-side issues can be expanded to include other aspects of production. In such a scheme, organizational and managerial factors can be considered to be active determinants of the nature and evolution of productive processes [46]. This helps overcome the product cycle's theoretical groundings in static orthodox theory and its implicit assumption of managerial behaviour as fixed and automatic. Additional details and specificity may also be introduced through an evolutionary phasing scheme, thereby expanding its potential for empirical applications. Another important implication of this approach is the possibility of considering regional and subnational aspects in greater detail, through the introduction and linkage of internal organizational aspects with spatial questions. Finally, the possibility of considering policy questions and implications is an additional benefit, as policy strategies will likely vary with each developmental phase.

The manufacturing process cycle's focus on productive processes and organizational aspects creates a different set of conditions from those assumed by the product cycle. A focus on manufacturing processes rather than products is more stable, since the latter can always be differentiated to induce temporal regressions in their life cycles. Significant modifications to productive processes usually require considerable amounts of capital investment and internal reorganization, thereby ensuring greater stability over time. The characteristics of production processes also affect much more directly a firm's internal requirements and tradeoffs. It is thus possible for a given manufacturing process to produce several versions of the same product, introducing significant product differentiation, while its productive structure (labour, technology, organization) remains basically unchanged. Also, for most significant process innovations, internal organizational questions are more important, or at least as important as changes in product demand, and have greater impact on the firm's internal structure [36; chs. 4 and 5]. In this respect, Georgescu-Roegen's [17] conception of economic processes as irreversible phenomena is very much a central assumption of the process cycle. In more pragmatic ways, the concept is also indebted to the work of Abernathy [1] and Abernathy and Townsend [2] in testing a life cycle model of production process development. A study of U.S. automotive engine plants verified these authors' assumptions on cyclical development and provided significant insights on the importance of process changes on productivity and innovation [1]. This was later complemented by Abernathy and Utterback [3] and by Hayes and Wheelwright [23; 24] in their attempt to link general aspects of process innovation with the product cycle concept.

The manufacturing process cycle's attention to corporate organization and planning is still another distinctive element that can be related to questions of process innovation. The firm's strategic priorities are assumed to vary with each phase of process evolution, and are targeted towards objectives that are possible to attain and which also are important for firm survival. The changing character of these priorities is a feature of the process cycle that can be related to the work of Cyert and March [12] and Williamson [60] on organizational behaviour and managerial objectives, to Wilensky [59] on organizational strategies, and to March and Olsen [34] on risk-taking behaviour and uncertainty. It also has the potential to be linked in a dynamic way to significant aspects of Simon's [41; 42] work on bounded rationality and to the work of Liebenstein [32; 33] on selective rationality and X-efficiency. These aspects also allow for the consideration of variable market conditions as another important characteristic of the manufacturing process cycle [46; 48]. At the same time, this allows for the possibility of relating the concept to the extensive literature on imperfect competition. In the discussions that follow, brief elements of oligopolistic competition, as elaborated in Bain's [4; 5] and Stigler's [45] pioneering work on industrial organization, will be related to the manufacturing process cycle's evolutionary character.

Three major elements will be considered by the manufacturing process cycle: organizational environments, labour, and technological requirements. These elements will be related to factor and product market conditions in advanced and less developed nations. Agglomeration-oriented industries will be the most appropriate to consider with respect to these variables. As opposed to raw-material-oriented and complementary industries, the production processes of agglomerative industries are more heavily oriented toward assembly operations. These industries are therefore most likely to diffuse to developing nations, given the possibility of obtaining substantial labour cost savings. One of the drawbacks of this approach is, unfortunately, the need to introduce a very
significant amount of generalization on the characteristics of productive processes. This is, however, a problem common to any broad conceptualization, and reflects the need to establish the general relevance of the approach before considering the more involved microanalytic details. A second negative aspect of this framework is that historical circumstances and specificity leading to major changes in production processes cannot be adequately considered. Such events are, in any case, probably more appropriate for individual case studies. In this respect, the Schumpeterian distinction between dynamic, as opposed to historical, time is very relevant [17:136]. The emphasis on dynamic time will therefore stress the continuity of developmental processes as applied to manufacturing production and its diffusion to less developed nations.

Table 1 outlines the most significant variables and elements of the manufacturing process cycle. Five major variables are included in the organizational environment element. Of these, strategic priorities are assumed to undergo the greatest change from one evolutionary phase to the next. In this, as in all the other variables, production process development occurs mostly in the advanced nations, reflecting these countries’ research and development priorities and market advantages. In general the firm’s strategic priorities vary in the advanced nations from outward-oriented strategies related to market share expansion (phases B, C) to internal concerns on cost and efficiency issues in the late phases (D, E, F). With the diffusion of manufacturing processes to less developed nations (phase C), outward-oriented strategies similar to those applied earlier in the advanced nations are initially implemented. Transnational corporations are assumed to exercise an important role in this diffusion process, although alternatives such as the purchase of technology by private and state-owned domestic firms has also been common. A much slower evolution towards decline in less developed nations during the late phases may be assumed, given higher probabilities of trade protection and domestic oligopoly.

Managerial skills in the advanced nations are assumed to be relatively higher during the earlier phases, requiring greater planning and coordination skills (see Table 1). This condition reflects the firm’s more prosperous market expansion possibilities. During the late phases (E, F), however, managerial skills are expected to be lower, reflecting their demand for applications to less complex, routine activities. This is also evidence of the very low possibilities for obtaining additional market share through aggressive marketing strategies. Managerial skills in the less developed nations are assumed to be generally lower than in the advanced nations during the middle phases (C, D), but may be on a similar level with those of the advanced nations during the late phases (E, F). These skills are also expected to be closely related to the marketing opportunities available to the enterprise. Marketing efforts are therefore also most intensive during the earlier phases of the process cycle, but will decline significantly in the late phases. Marketing potential in the less developed nations will generally be high during the middle phases, after the establishment of a manufacturing process, but may not, on the other hand, be fully realized due to demand constraints imposed by low incomes and a very skewed distribution of wealth.

Product markets in the advanced nations are generally assumed to be oligopolistic in the early phases, becoming more competitive at mid-life, and very competitive in the late phases (see Table 1). Entry barriers are therefore assumed to be strongest when quasi-monopolistic conditions exist, as in phase B [45:138]. Product differentiation also becomes more likely in phase D, and process substitution more probable in the late phases (E, F). Product markets in the less developed nations are, on the other hand, assumed to remain generally protected. Greater competition is nevertheless assumed to occur in the late phases in these nations. The overall scale of a productive process is also closely related to product market conditions. In the advanced nations, the productive process’s scale is expected to grow very rapidly after a new product has found useful applications. Thus, in phase B, conditions for vertical integration may be strongest as the firm captures a sizable and growing segment of the market [45:136]. In the mid-life phases (C, D), vertical disintegration is expected to occur, along with the possibility of some horizontal integration through mergers and acquisitions. As competition intensifies, however, horizontal disintegration will also increase and may become more pronounced in the late phases (E, F). In the less developed nations, vertical integration is expected to be more pronounced, if allowed and promoted by institutional mechanisms, due to protected markets and the possibility of creating and consolidating missing forward and backward linkages. Horizontal integration may also develop strongly in the late phases in the less developed nations if competition increases, or if it is promoted by institutional arrangements. Whenever they are effective, domestic policy instruments in these nations may have substantial impact on these restructurings.

Labour questions are also a major element of the manufacturing process cycle. In the early phases, employment in the advanced nations is expected to grow rapidly, as a result of market expansion. It is then expected to stabilize in the middle phases, while
Table 1
THE MANUFACTURING PROCESS CYCLE IN MDC/LDC* CONTEXTS
FOR AGGLOMERATION-ORIENTED INDUSTRIES

<table>
<thead>
<tr>
<th>Phase A</th>
<th>Phase B</th>
<th>Phase C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. ORGANIZATIONAL ENVIRONMENT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Strategic Priorities
 MDC: R & D productivity maximization
 MDC: Market extent maximization
 MDC: Market share maximization
 LDC: Initial market penetration

2. Overall Managerial Skills
 MDC: Limited to R & D operations/productive applications
 MDC: High organizational and coordinative skills/overall corporate planning
 MDC: High promotional skills/overall corporate planning
 LDC: Preliminary planning of organizational entity

3. Marketing
 MDC: Non-existent
 MDC: Rapid build-up of sales/service networks
 MDC: Well developed sales/service networks
 LDC: Creation of sales/services networks

4. Product Markets
 MDC: Non-existent
 MDC: Semi-monopolistic/high concentration
 MDC: Oligopolistic/decreasing concentration
 LDC: Monopolistic/oligopolistic

5. Operational Scale & Organization
 MDC: Limited to R & D
 MDC: Very rapid growth/vertical integration
 MDC: Growing/large scale/vertical disintegration starts
 LDC: Start-up phase/rapid growth

II. LABOUR

1. Overall Employment
 MDC: Non-existent
 MDC: Rapid growth
 MDC: Growing
 LDC: Rapid growth of very small labour force

2. Skills
 MDC: Highly skilled professionals or technicians
 MDC: Biased toward professional/technical occupations
 MDC: More balance between professional/technical & blue-collar
 LDC: Moderately-skilled blue-collar

3. Costs
 MDC: High
 MDC: Rapidly increasing
 MDC: Increasing/unionization
 LDC: Increasing but much lower than in MDCs

III. TECHNOLOGY

1. R & D
 MDC: Very intensive/product innovation phase
 MDC: Developing productive applications/process innovation starts
 MDC: Improving productive applications/process innovation at mid-life
 LDC: Non-existent

2. Capital Equipment
 MDC: Non-existent
 MDC: Rapid installation and expansion
 MDC: Moderate-high expansion/automation starts
 LDC: Limited

3. Financing
 MDC: Very inaccessible
 MDC: Very accessible
 MDC: Very accessible
 LDC: Accessible

4. Raw materials
 MDC: No demand
 MDC: Rapidly increasing demand
 MDC: High demand
 LDC: Increasing demand

* MDC: most developed countries; LDC: less developed countries.
Table 1 (cont.)

I. ORGANIZATIONAL ENVIRONMENT

<table>
<thead>
<tr>
<th>Phase D</th>
<th>Phase E</th>
<th>Phase F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Strategic Priorities</td>
<td>MDC: Mass production efficiency and scale economies maximization LDC: Market share maximization</td>
<td>MDC: Labour cost minimization LDC: Market share conservation</td>
</tr>
<tr>
<td>2. Overall Managerial Skills</td>
<td>MDC: Sub-organizational planning & coordination LDC: Overall subsidiary coordination and planning/promotional skills</td>
<td>MDC: Limited to day-to-day operations/ labour relations LDC: Sub-organizational coordination</td>
</tr>
<tr>
<td>3. Marketing</td>
<td>MDC: Relatively less important LDC: Expansion of sales/service networks</td>
<td>MDC: No extensive efforts/saturated markets LDC: Limited expansion</td>
</tr>
</tbody>
</table>

II. LABOUR

<table>
<thead>
<tr>
<th>Phase D</th>
<th>Phase E</th>
<th>Phase F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Overall Employment</td>
<td>MDC: Stagnant LDC: Growing/moderately large labour force</td>
<td>MDC: Stagnant or declining LDC: Leveling off/large labour force</td>
</tr>
<tr>
<td>2. Skills</td>
<td>MDC: Deskilling starts LDC: Mostly blue-collar</td>
<td>MDC: Mostly blue-collar LDC: Lower-skilled blue-collar</td>
</tr>
<tr>
<td>3. Costs</td>
<td>MDC: Increasing/unification more active LDC: Increasing or stagnant</td>
<td>MDC: Stagnant or decreasing LDC: Stagnant or decreasing</td>
</tr>
</tbody>
</table>

III. TECHNOLOGY

<table>
<thead>
<tr>
<th>Phase D</th>
<th>Phase E</th>
<th>Phase F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. R & D</td>
<td>MDC: Less important/process innovation ends LDC: Non-existent or very limited</td>
<td>MDC: Very limited if present LDC: Non-existent or very limited</td>
</tr>
<tr>
<td>4. Raw materials</td>
<td>MDC: Demand growing at decreasing rates LDC: Rapidly increasing demand</td>
<td>MDC: Decreasing demand LDC: Demand growing at decreasing rates</td>
</tr>
</tbody>
</table>
Diffusion Factors and the New Global Division of Labor

Three major evolutionary factors are considered to affect the establishment and growth of manufacturing activities in less developed nations. These factors are key elements of the manufacturing process cycle and help shape the evolutionary path of productive processes in significant ways. Labour is a very important factor. In many manufacturing industries, labour costs are the most significant item as a proportion of total production costs. They are also the most spatially differentiated factor of production, particularly in the context of advanced nations, in more ways than any other input factor [57]. In this sense, labour skill
specifications and behavioural characteristics are important requirements of any production process, and may be considered to vary according to the evolutionary peculiarities of each process. Insofar as the less developed nations are concerned, labour costs are generally lower than for the advanced nations. Table 2 presents estimates of average labour costs and working hours in 32 less developed nations that have undergone significant industrialization. Labour costs are found to vary from 25 to 3 percent of prevailing U.S. wages in the industry considered. Similarly, working hours are generally higher and promote greater labour productivity, given unit costs. These characteristics are a consequence of the labour surplus and underemployment problems that are so typical of most developing nations. They are also powerful attraction factors for the diffusion of manufacturing activities from the advanced to the less developed nations, particularly as production processes become more reliant on less skilled labour.

![Table 2](image)

Table 2

REPRESENTATIVE WAGES AND WORKING HOURS IN SELECTED LDCs, 1979

<table>
<thead>
<tr>
<th>Country</th>
<th>(a)</th>
<th>(b)</th>
<th>Country</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td></td>
<td></td>
<td>Latin America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>48</td>
<td>.00</td>
<td>Brazil</td>
<td>48</td>
<td>.10</td>
</tr>
<tr>
<td>India</td>
<td>48</td>
<td>.05</td>
<td>Chile</td>
<td>n.a.</td>
<td>.12</td>
</tr>
<tr>
<td>Indonesia</td>
<td>40</td>
<td>.07</td>
<td>Colombia</td>
<td>48</td>
<td>.06</td>
</tr>
<tr>
<td>Jordan</td>
<td>48</td>
<td>.16</td>
<td>Dominican Republic</td>
<td>44</td>
<td>.14</td>
</tr>
<tr>
<td>Malaysia</td>
<td>48</td>
<td>.05</td>
<td>El Salvador</td>
<td>44</td>
<td>.12</td>
</tr>
<tr>
<td>Philippines</td>
<td>48</td>
<td>.05</td>
<td>Guatemala</td>
<td>45</td>
<td>.10</td>
</tr>
<tr>
<td>Singapore</td>
<td>44</td>
<td>.12</td>
<td>Haiti</td>
<td>48</td>
<td>.05</td>
</tr>
<tr>
<td>South Korea</td>
<td>48</td>
<td>.07</td>
<td>Honduras</td>
<td>44</td>
<td>.08</td>
</tr>
<tr>
<td>Taiwan</td>
<td>48</td>
<td>.07</td>
<td>Jamaica</td>
<td>48</td>
<td>.26</td>
</tr>
<tr>
<td>Thailand</td>
<td>48</td>
<td>.05</td>
<td>Mexico</td>
<td>48</td>
<td>.22</td>
</tr>
<tr>
<td>Turkey</td>
<td>n.a.</td>
<td>.20</td>
<td>Panama</td>
<td>48</td>
<td>.16</td>
</tr>
<tr>
<td>Western Samoa</td>
<td>40</td>
<td>.12</td>
<td>Puerto Rico</td>
<td>48</td>
<td>.65</td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td>St. Lucia</td>
<td>40</td>
<td>.10</td>
</tr>
<tr>
<td>Egypt</td>
<td>42</td>
<td>.10</td>
<td>Uruguay</td>
<td>48</td>
<td>.14</td>
</tr>
<tr>
<td>Liberia</td>
<td>n.a.</td>
<td>.06</td>
<td>Venezuela</td>
<td>48</td>
<td>.17</td>
</tr>
<tr>
<td>Mauritius</td>
<td>45</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senegal</td>
<td>40</td>
<td>.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunisia</td>
<td>48</td>
<td>.12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Working hours per week.

(b) Hourly wages for unskilled labour, expressed as a share of U.S. hourly wage (electronics manufacturing).

Source: Author's calculations, assisted by individual country censuses.

In general, it may also be expected that a majority of production tasks in the less developed nations are relatively less complex, with the possible exception of capital goods manufacturing. This characteristic is related to the relatively lower and scarcer labour skills. Organizational capabilities, a second important factor affecting the diffusion of manufacturing to less developed nations, is also of generally lower quality and scarcer, and is closely related to the lower complexity of production tasks. Contrary to the assumptions of orthodox economic theory, organizational skills in manufacturing are highly differentiated spatially, particularly with respect to less-developed/more-advanced nation comparisons. It is therefore not surprising that many manufacturing operations in less developed countries allow for the relatively more profitable substitution of labour for machinery. This is often accomplished through the application of somewhat obsolete technologies that are more labour and managerial skill-saving. If the evolutionary trend of most production processes can be considered to be less organizational-skill-intensive as their application advances through time, then the diffusion of manufacturing to less developed nations in the later phase of the process cycle is a logical consequence.

Technological change is the third major evolutionary factor affecting the diffusion of manufacturing activities. Most technological advances or applications in the less developed nations occur through the transfer of technology from industrialized nations. Conditions in these nations are therefore generally more favourable for assembly-type operations and less so for highly technological and complex tasks, given scarce labour and managerial skills, and the prevailing conditions in educational and scientific institutions. Innovations in production may in most cases be related to experimentation in the utilization of labour rather than in the design or application of completely new tools or equipment. The rate of technological transfer to the less developed nations may thus be considered to depend, first, on the rate of change in production processes, and on product differentiation in the advanced nations. The accelerated development of new generations of productive processes and techniques can therefore increase the diffusion of manufacturing activities. An example of this may be found in the production of semiconductors in electronics, where the evolutionary development of its manufacturing process has been accelerated through the phases of the process cycle. Second, production processes that comprise highly mechanized or automated operations but which also have certain routines that cannot be automated are rendered more profitable by locating in the labour surplus nations. In such cases, the reliance on labour for the performance of non-automated tasks may occur because of
the substantial capital investment required to automate, and the possibility that these investments may not be profitable, given possible rapid changes in production process technology. Semiconductor manufacturing is, again, a good example. Two major operations can be easily automated (production of masks and wafers), while a third (assembly and testing) has generally been labour-intensive. Typically, it is this portion of semiconductor manufacturing that has spread most rapidly to the less developed nations. Increasing demand for products whose manufacturing processes have these characteristics can further accelerate their diffusion to less developed nations.

All of these three major evolutionary factors are related to the specific characteristics of manufacturing processes and to their development over time. Organizational capabilities can nevertheless modify evolutionary trends related to a manufacturing process's advance through its life cycle. Internal organizational tactics and effective product differentiation can thus retard process substitution trends. However, patterns of manufacturing process evolution and substitution can seldom, if ever, be reversed. Varying rates of evolutionary advance will apply to different processes in the same manner as their diffusion and allocation in the international division of labour develops. In this respect, policy mechanisms have been and can be used to accelerate the establishment of certain industries better than others, depending on perceived national needs and conditions [39;30]. Indeed, most of the growth of manufacturing activities in less developed nations can be traced to the conscious formulation and implementation of some form of industrialization policy (Table 3). While the effectiveness of many of those policies has been questioned, it must nevertheless be recognized that when their objectives matched the realities of a country's locational attraction, the results obtained have been impressive. Countries such as Brazil, Mexico, South Korea, Taiwan, Hong Kong and Singapore are important examples of effective industrialization policy applications.

Five major industrialization policy strategies have been applied in less developed nations (Table 4). Export-oriented industrialization policies were promoted by many nations during the past decade as a means to increase foreign exchange earnings, improve trade balances, and promote diversification of their manufactured exports. Because in most cases export-oriented industries have to compete with products manufactured in the industrialized nations, their labour, managerial skills, and technological requirements can be expected to be high and may approximate those of similar manufacturing processes in the advanced nations. World market factories (usually established by transnational corporations) and industrial export enclaves have been common vehicles for the implementation of export-oriented industrialization [48].

In the latter, manufacturing operations that are no longer profitable in industrialized nations may become the norm. If so, then the labour and managerial skills and technological requirements of export enclave industries can be expected to be significantly lower than for world market factories that are more capital intensive and serve both international and domestic markets in the less developed nations. Thus, in so far as the spatial distribution of export-oriented industries is concerned, it may be expected that the major locational tradeoff will be between labour costs and shipping costs of inputs to the manufacturing site, and of products to market.

Industrialization strategies related to the preliminary processing of raw material exports have also been an important focus of policy attention. Although their primary motivation has been to increase foreign exchange earnings, the creation and intensification of forward linkages has been an equally strong objective. Their requirements of labour and managerial skills, and technology, can be considered variable, depending on the degree of international competition and demand for the necessary raw materials. When such competition comes mostly from the advanced nations, skills and technological requirements can be significantly higher than when such competition is derived from other less developed nations. The spatial distribution of these operations can therefore be expected to correspond to the distribution of natural resource

<table>
<thead>
<tr>
<th></th>
<th>Industrialized Nations<sup>a</sup></th>
<th>Less Developed Nations<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Manufacturing<sup>c</sup></td>
<td>4.5 4.3 1.1</td>
<td>4.4 0.6 4.6</td>
</tr>
<tr>
<td>Heavy Manufacturing<sup>d</sup></td>
<td>7.0 5.9 0.5</td>
<td>8.6 10.2 7.3</td>
</tr>
<tr>
<td>All Manufacturing</td>
<td>6.2 5.3 0.8</td>
<td>6.1 8.2 0.1</td>
</tr>
</tbody>
</table>

^a U.S., Canada, Japan, Western Europe, Australia.
^b Asia, Africa, Latin America.
^c Food; Tobacco; Textiles; Apparel; Furniture; Paper; Printing and Publishing; Leather; Electronics; Instruments.
^d Chemicals; Petroleum; Rubber and Plastics; Stone, Clay and Glass; Primary Metals; Fabricated Metals; Machinery; Transportation Equipment.

A basic industry or capital goods manufacturing strategy may be implemented to provide the necessary backward or supply links to import-substituting consumer industries and to create forward links to the raw materials processing industries. If export-oriented, these industries may also increase foreign exchange earnings while fulfilling political and national strategic priorities. Because these processes usually involve complex operations, their requirements of skills and technology may frequently be high. A fifth and less important type of industrialization strategy has been small-scale, labour-intensive manufacturing. These industries are usually the focus of policies devised to promote manufacturing in rural areas, with the objective of stemming urban-bound migration, improving rural-urban income distribution, and increasing sources of employment in backward regions. These industries may also be part of a wider rural development strategy that seeks to promote agriculture-related manufacturing. Skill and technology requirements may generally be considered to be significantly lower than for all of the previous industries considered. The spatial distribution of both capital goods and rural small-scale industries can therefore be expected to be significantly conditioned by
the availability of indigenous resources, given their importance as productive process inputs and the difficulties of importing those resources in less developed nations.

Conclusions

This paper has presented the concept of the manufacturing process cycle as a framework for the analysis of manufacturing change and its diffusion to less developed nations. Three major factors, labour, technology, and the organizational environment, have been outlined and are considered to be significant in determining the diffusion and establishment of manufacturing activities in less developed countries. It is assumed that these factors are intimately related to the evolutionary dynamics of manufacturing processes and that their change and interaction with policy mechanisms over the life cycle of such processes determine how the international division of labour in manufacturing is shaped.

Although the conceptual discussion has emphasized the general relevance of the manufacturing process cycle rather than its microanalytic details, additional work on these aspects needs to be seriously considered. It is hoped that this will result from an increasing scholarly interest in the evolutionary approach. The need for empirical applications of this framework is also an important and necessary concern. Obstacles to empirical testing of the concept at an international, multi-country level are, unfortunately, very difficult to overcome. There is, for instance, a general lack of adequate and compatible longitudinal data to compare individual country performances on manufacturing diffusion and growth. The lack of sufficient data at adequate levels of detail of the industrial classification is also a serious obstacle. This problem is further compounded by the confidentiality restrictions imposed by most nations whenever substantially detailed industrial data are required. Considering these obstacles, it is likely that empirical analyses of relatively limited periods of time may be the best that can be hoped for at the present time. An additional difficulty is the very limited amount of adequate empirical knowledge on the effectiveness of the various industrialization policy mechanisms and the lack of appropriate data to undertake such analyses.

When the rapid internationalization of manufacturing industries is broadly considered, it is possible to determine that, while the emphasis on the objectives and scope of industrialization strategies has changed from import substitution to export promotion, the established evolutionary hierarchy in the diffusion of manufacturing processes to the less developed nations has remained virtually stable. This hierarchy may be assumed not to have been significantly affected by the acceleration of evolutionary paths in certain industries, such as electronics, and their more rapid diffusion to less developed countries. Invariably, the diffusion of manufacturing skills and technology may be assumed to occur in the mid-life phases of the process cycle, when competition in the advanced nations becomes more intense and the need to increase market areas becomes imperative. From an evolutionary perspective, it may therefore be seen that the early and more innovative periods of any productive process, when linkages to research and development are strong and essential, are most likely to occur and remain in the advanced nations.

Other aspects of the manufacturing process cycle also need to be considered in greater detail. For example, the question of phase transitions deserves additional study. Other details on the mechanisms affecting the international diffusion of manufacturing, whether generated by institutions or the market, need to be considered, along with their application over time. Questions related to entrepreneurial supply in the host countries and their influence on diffusion rates and the evolution of manufacturing processes should also be of considerable interest. Finally, a better understanding of which industrialization policies can be most effective in each phase of the process cycle is also important. Policy strategies and their impact on national economic priorities, such as the promotion of investment in manufacturing, labour absorption, and the introduction of missing forward and backward linkages can, for example, be related to the development of industries and their manufacturing processes. It is hoped that this article will stimulate additional interest and empirical research on these questions.

References

